# **AD\ANTECH**

MOS-1120Y-0201E Isolated RS-232 iDoor Module, MOS-1120Y-1401E Non-Isolated RS-232 iDoor Module, MOS-1121Y-0201E Isolated RS-422/485 iDoor Module, MOS-1121Y-1401E Non-Isolated RS-422/485 iDoor Module

# **User Manual**

MOS-1120Y/MOS-1121Y is serie of industrial Serial Communication Module.

| P/N             | Description                                   |
|-----------------|-----------------------------------------------|
| MOS-1120Y-0201E | Isolated RS-232, 2-Ch, DB9, PCIe I/F          |
| MOS-1121Y-0201E | Isolated RS-422/485, 2-Ch, DB9, PCIe I/F      |
| MOS-1120Y-1401E | Non-Isolated RS-232, DB37, 4-Ch, PCIe I/F     |
| MOS-1121Y-1401E | Non-Isolated RS-422/485, DB37, 4-Ch, PCIe I/F |

This manual gives you inspection and installation of hardware and drivers.

# **1.Packing List**

#### MOS-1120/MOS-1121

- miniPCle Card x 1
- DB37 I/O Plate x 1 with iDoor bracket x 1
- Wire cable x 1
- Startup Manual x 1
- BB37 to DB9(4 ports) cable (MOS-1121Y-1401E only)

Note: If any of these items are missing or damaged, please contact your distributor or sales representative immediately.

# **2. Initial Inspection**

MOS-1120/MOS-1121 was carefully inspected mechanically and electrically before it was shipped. It should be free of marks and scratches and in perfect working order when received.

As you unpack the MOS Module, check for signs of shipping damage (damaged box, scratches, dents, etc.). If it is damaged or it fails to meet specifications, notify our service department or your local sales representative immediately. Also notify the carrier. Retain the shipping carton and packing material for inspection by the carrier.

After inspection we will make arrangements to repair or replace the unit. When you handle the MOS Module, remove it from its protective packaging by grasping the rear metal panel. Keep the anti-vibration packing. Whenever you remove the card from the PC, store it in this package for protection.

#### Warning!



Discharge your body's static electric charge by touching the back of the grounded chassis of the system unit (metal) before handling the board. You should avoid contact with materials that hold a static charge such as plastic, vinyl and Styrofoam. Handle the board only by its edges to avoid static damage to its integrated circuits. Avoid touching the exposed circuit connectors. We also recommend that you use a grounded wrist strap and place the card on a static dissipative mat whenever you work with it.

### **3. Driver Setup & Installation**

Please follow the steps below to install Advantech CAN WDM Driver.

For MOS-1120/MOS-1121 series driver download, please visit Advantech website:

http://support.advantech.com/Support/SearchResult.aspx?keyword=MOS-1120Y-1401E&searchtab s=BIOS,Certificate,Datasheet,Driver,Firmware,Manual,Online%20Training,Software%20Utility,Utility, FAQ,Installation,Software%20API,Software%20API%20Manual,3D%20Model&select\_tab=Driver

1. Download and double click the .exe file from the website, then the driver will begin to setup.



2. In the Control Panel, click Advantech PCI ICOM Driver then uninstall.

| 🐻 Add or Ren                | nove Programs                         |              |               | - O X  |
|-----------------------------|---------------------------------------|--------------|---------------|--------|
| -                           | Currently installed programs:         | Show upgates | Sort by: Name | •      |
| Change or<br>Remove         | 🛃 Advantech DiagAnywhere Server       |              | Size          | 0.11MB |
| Programs                    | 🕞 Advantech PCI ICOM Driver           |              | Size          | 1.21MB |
| - 🕵                         | Click here for support information.   |              | Used          | rarely |
| Add <u>N</u> ew<br>Programs | To change this program, click Change. |              |               | Change |
| 6                           |                                       |              |               |        |
| Add/Remove<br>Windows       |                                       |              |               |        |
| Components                  |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |
|                             |                                       |              |               |        |

3. Choose "Remove" then click "Next" then start to remove all installed components.



### 4. Pin Assignments

#### 4.1 MOS-1120Y-0201E

The following table and figure shows the pin assignments of two male DB9 connectors on the iDoor bracket for MOS-1120Y-0201E card in RS-232 Mode.

Table 4.1: MOS-1120Y-0201E Male DB9 on iDoor bracket



#### 4.2 MOS-1121Y-0201E

The following table and figure shows the pin assignments of two male DB9 connectors on the iDoor bracket for MOS-1121Y-0201E card in RS-422 and RS-485 Modes.

Table 4.2: MOS-1121Y-0201E Male DB9 on iDoor Bracket

| Pin | RS-422 | RS-485 |                                                                           |
|-----|--------|--------|---------------------------------------------------------------------------|
| 1   | Tx-    | Data-  |                                                                           |
| 2   | Tx+    | Data+  | 1 2 3 4 5                                                                 |
| 3   | Rx+    | -      | $\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ |
| 4   | Rx-    | -      |                                                                           |
| 5   | GND    | GND    |                                                                           |
| 6   | RTS-   | -      |                                                                           |
| 7   | RTS+   | -      | 6 7 8 9                                                                   |
| 8   | CTS+   | -      |                                                                           |
| 9   | CTS-   | -      |                                                                           |

#### 4.3 MOS-1120Y-1401E

The following tables and figures show the pin assignments of 1 female DB37 connector one the iDoor bracket to male DB9 for MOS-1120Y-1401E card in RS-232 mode.

| Table 4.3: MOS-1120Y-1401E Male DB9 on C | able |
|------------------------------------------|------|
|------------------------------------------|------|

| Pin | RS-232 |                                                  |
|-----|--------|--------------------------------------------------|
| 1   | DCD    |                                                  |
| 2   | RxD    | 1 2 3 4 5                                        |
| 3   | TxD    | $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ |
| 4   | DTR    |                                                  |
| 5   | GND    |                                                  |
| 6   | DSR    |                                                  |
| 7   | RTS    | 6 7 8 9                                          |
| 8   | CTS    |                                                  |
| 9   | RI     |                                                  |

|     |        |     | e DD37 OITID001 DIacket |
|-----|--------|-----|-------------------------|
| Pin | RS-232 | Pin | RS-232                  |
| 1   | -      | 20  | 3_RI                    |
| 2   | 3_DCD  | 21  | 3_DTR                   |
| 3   | 3_GND  | 22  | 3_DSR                   |
| 4   | 3_CTS  | 23  | 3_RTS                   |
| 5   | 3_RxD  | 24  | 3_TxD                   |
| 6   | 4_RI   | 25  | 4_DCD                   |
| 7   | 4_DTR  | 26  | 4_GND                   |
| 8   | 4_DSR  | 27  | 4_CTS                   |
| 9   | 4_RTS  | 28  | 4_RxD                   |
| 10  | 4_TxD  |     |                         |
|     |        | 29  | 2_RI                    |
| 11  | 2_DCD  | 30  | 2_DTR                   |
| 12  | 2_GND  | 31  | 2_DSR                   |
| 13  | 2_CTS  | 32  | 2_RTS                   |
| 14  | 2_RxD  | 33  | 2_TxD                   |
|     |        |     |                         |
| 15  | 1_RI   | 34  | 1_DCD                   |
| 16  | 1_DTR  | 35  | 1_GND                   |
| 17  | 1_DTS  | 36  | 1_CTS                   |
| 18  | 1_RTS  | 37  | 1_RxD                   |
| 19  | 1_TxD  |     |                         |
|     | 19     |     | 1                       |
|     |        |     | 1                       |

Table 4.4: MOS-1120Y-1401E Female DB37 on iDoor bracket



#### 4.4 MOS-1121Y-1401E

The following tables and figures show the pin assignments of 1 female DB37 connector one the iDoor bracket to male DB9 for MOS-1121Y-1401E card in RS-422 and RS-485 modes.

#### Table 4.5: MOS-1121Y-1401E Male DB9 on Cable



#### Table 4.6: MOS-1121Y-1401E Female DB37 on iDoor bracket

| Pin | RS-422 | RS-485  | Pin | RS-422 | RS-485  |
|-----|--------|---------|-----|--------|---------|
| 1   | -      | -       | 20  | -      | -       |
| 2   | 3_TxD- | 3_Data- | 21  | 3_RxD- | -       |
| 3   | 3_GND  | 3_GND   | 22  | -      | -       |
| 4   | -      | -       | 23  | -      | -       |
| 5   | 3_TxD+ | 3_Data+ | 24  | 3_RxD+ | -       |
|     |        |         |     |        |         |
| 6   | -      | -       | 25  | 4_TxD- | 4_Data- |
| 7   | 4_RxD- | -       | 26  | 4_GND  | 4_GND   |
| 8   | -      | -       | 27  | -      | -       |
| 9   | -      | -       | 28  | 4_TxD+ | 4_Data+ |
| 10  | 4_RxD+ | -       |     |        |         |
|     |        |         | 29  | -      | -       |
| 11  | 2_TxD- | 2_Data- | 30  | 2_RxD- | -       |
| 12  | 2_GND  | 2_GND   | 31  | -      | -       |
| 13  | -      | -       | 32  | -      | -       |
| 14  | 2_TxD+ | 2_Data+ | 33  | 2_RxD+ | -       |
|     |        |         |     |        |         |
| 15  | -      | -       | 34  | 1_TxD- | 1_Data- |
| 16  | 1_RxD- | -       | 35  | 1_GND  | 1_GND   |
| 17  | -      | -       | 36  | -      | -       |
| 18  | -      | -       | 37  | 1_TxD+ | 1_Data+ |
| 19  | 1_RxD+ | -       |     |        |         |



MOS-1120/MOS-1121 User Manual 5

### **5. Jumper and Switch Settings**

#### 5.1 MOS-1121Y-0201E Settings



#### Table 5.1: MOS-1121Y-0201E Master/Slave Settings

| Jumper | Pin | Description                   |  |
|--------|-----|-------------------------------|--|
| CN2    | 1-2 | RS-422 Master                 |  |
|        | 2-3 | RS-485/RS-422 Slave (Default) |  |

#### Table 5.2: MOS-1121Y-0201E Terminal Resistor Settings

| Switch | Terminal Resistor | Switch Setting |  |  |
|--------|-------------------|----------------|--|--|
| SW1    |                   | 1(D+/-) on     |  |  |
|        | 120 ohm           | 2(RX+/-) on    |  |  |
|        |                   | 3,4 off        |  |  |
|        |                   | 3(D+/-) on     |  |  |
|        | 300 ohm           | 4(RX+/-) on    |  |  |
|        |                   | 1,2 off        |  |  |

#### 5.2 MOS-1121Y-1401E Settings



#### Table 5.3: MOS-1121Y-1401E Master/Slave Settings

| COM Port | Switch | Pin | Setting | Description                   |
|----------|--------|-----|---------|-------------------------------|
| COM 1    |        | 4   | ON      | RS-422 Master                 |
|          |        | 1   | OFF     | RS-485/RS-422 Slave (Default) |
| COM 2    | _      | 2   | ON      | RS-422 Master                 |
|          | C14/4  | 2   | OFF     | RS-485/RS-422 Slave (Default) |
| COM 3    | -3001  | 2   | ON      | RS-422 Master                 |
|          |        | 3   | OFF     | RS-485/RS-422 Slave (Default) |
| 0014     |        | 4   | ON      | RS-422 Master                 |
|          |        | 4   | OFF     | RS-485/RS-422 Slave (Default) |

| COM Port Switch | Pin | Setting | RS-422 Description         | RS-485 Description             |
|-----------------|-----|---------|----------------------------|--------------------------------|
|                 | 1   | ON      | 120 Ohm between<br>Tx+/Tx- | 120 Ohm between<br>Data+/Data- |
| 00114           |     | OFF     | Open (Default)             |                                |
| COMT            | 2   | ON      | 120 Ohm between<br>Rx+/Rx- | Invalid                        |
| SIM0            |     | OFF     | Open (Default)             |                                |
|                 | 3   | ON      | 120 Ohm between<br>Tx+/Tx- | 120 Ohm between<br>Data+/Data- |
| COM 2           |     | OFF     | Open (Default)             |                                |
|                 | 4   | ON      | 120 Ohm between<br>Rx+/Rx- | Invalid                        |
|                 |     | OFF     | Open (Default)             |                                |
|                 | 1   | ON      | 120 Ohm between<br>Tx+/Tx- | 120 Ohm between<br>Data+/Data- |
| 00112           |     | OFF     | Open (Default)             |                                |
| COM 3           | 2   | ON      | 120 Ohm between<br>Rx+/Rx- | Invalid                        |
| SING            |     | OFF     | Open (Default)             |                                |
|                 | 3   | ON      | 120 Ohm between<br>Tx+/Tx- | 120 Ohm between<br>Data+/Data- |
| COM 4           |     | OFF     | Open (Default)             |                                |
|                 | 4   | ON      | 120 Ohm between<br>Rx+/Rx- | Invalid                        |
|                 |     | OFF     | Open (Default)             |                                |
|                 |     |         |                            |                                |

#### Table 5.4: MOS-1121Y-1401E Terminal Resistor Settings

### 6. Wiring

#### 6.1 RS-232 Signal Wiring

Since the RS-232 interface is not strictly defined, many devices have their own connection methods which may ignore some signal lines or define reserved lines for other functions. It is best to refer to the user's manual for your device for installation instructions. You may find the following helpful.

In general, DTE (Data Terminal Equipment) refers to the device that is leading the communication. Examples

include PC's, terminals and some printers. DCE refers to the device being communicated with or controlled.

Examples include modems, DSU's (digital service units), printers and lab/factory equipment.

In some situations you may be able to get by with just three lines: data on TXD, a signal ground and a handshaking line. Examples are printer or plotter connections, troubleshooting and situations where you require only one-wire communication.

| DB-25 Male |        | DB-25 Male or Female: Terminal |        |  |
|------------|--------|--------------------------------|--------|--|
| Pin        | Signal | Pin                            | Signal |  |
| 2          | TxD    | 3                              | RxD    |  |
| 3          | RxD    | 2                              | TxD    |  |
| 4          | RTS    | 5                              | CTS    |  |
| 5          | CTS    | 4                              | RTS    |  |
| 6          | DSR    | 20                             | DTR    |  |
| 7          | GND    | 7                              | GND    |  |
| 20         | DTR    | 6                              | DSR    |  |
| 8          | DCD    | 8                              | DCD    |  |

Table 6.1 Terminal or PC (DTE) Connections

#### Table 6.2: Modem Connections

|     | DB-25 Male |     | Modem (DCE) |  |  |
|-----|------------|-----|-------------|--|--|
| Pin | Signal     | Pin | Signal      |  |  |
| 2   | TxD        | 3   | RxD         |  |  |
| 3   | RxD        | 2   | TxD         |  |  |
| 4   | RTS        | 5   | CTS         |  |  |
| 5   | CTS        | 4   | RTS         |  |  |
| 6   | DSR        | 20  | DTR         |  |  |
| 7   | GND        | 7   | GND         |  |  |
| 20  | DTR        | 6   | DSR         |  |  |
| 8   | DCD        | 8   | DCD         |  |  |

For DTE to DCE connections, use a straight through cable (i.e., you don't have to reverse lines 2 and 3, lines 4 and 5, and lines 6 and 20 since, in general, the DCE RS-232 interfaces are reversed themselves).

| DB-25 Male |        | Terminal, PC (DTE) |        |
|------------|--------|--------------------|--------|
| Pin        | Signal | Pin                | Signal |
| 2          | TxD    | 3                  | RxD    |
| 3          | RxD    | 2                  | TxD    |
| 4          | RTS    |                    |        |
| 5          | CTS    |                    |        |
| 7          | GND    | 7                  | GND    |
| 6          | DSR    |                    |        |
| 20         | DTR    |                    |        |
| 8          | DCD    |                    |        |

|  | Table 6.3: | Terminal | without | Handshake |
|--|------------|----------|---------|-----------|
|--|------------|----------|---------|-----------|

Therefore, if you are not using CTS, RTS, DSR,DTR and DCD signals, short pins 4 and 5 together, and please short pins 6, 8,and 20 together.

#### 6.2 RS-422 Signal Wiring

The RS-422 interface wiring is based on one-to-one principles. The transmit lines on one side connect to the receive lines on the other side, and vice versa. With RS-422, you can transmit and receive data simultaneously (full duplex). The connections are as follows:

|     | 10010-0.4.11    | 5 <del>4</del> 22 DD5 1 117(55) | griment |  |
|-----|-----------------|---------------------------------|---------|--|
|     | DTE (Male DB-9) | Terminal DTE                    |         |  |
| Pin | Signal          | Pin                             | Signal  |  |
| 1   | TxD-            | 1                               | RxD-    |  |
| 2   | TxD+            | 2                               | RxD+    |  |
| 3   | RxD+            | 3                               | TxD+    |  |
| 4   | RxD-            | 4                               | TxD-    |  |
| 5   | GND             | 5                               | GND     |  |
| 6   | RTS-            | 6                               | CTS-    |  |
| 7   | RTS+            | 7                               | CTS+    |  |
| 8   | CTS+            | 8                               | RTS+    |  |
| 9   | CTS-            | 9                               | RTS-    |  |

Table 6.4:RS-422 DB9 Pin Assignment

#### **Terminator Resistors Setup**

The signals DSR, DTR and DCD are shorted internally on the PCM-24D2R4/24D4R4 cards when operating in RS-422 mode. A user can solder in termination resistors if necessary for impedance matching. The card has two mounting spaces for termination resistors, but no resistors are installed at the factory. Each pair of signal lines has a separate resistor (RxD+/-, TxD+/-).

#### 6.3 RS-485 Signal Wiring

The RS-485 standard supports half-duplex communication. This means that just two wires are needed to both transmit and receive data. Handshaking signals (such as RTS, Request To Send) are normally used to control the direction of the data flow and to switch the transmission accordingly. In RS-485 mode, the PCM-24D2R4/24D4R4 cards automatically sense the direction of the data flow and switch the transmission direction — no handshaking is necessary. This means a user can build an RS-485 network with just two wires. This RS-485 control is completely transparent to the user. The software written for half duplex RS-232 works without any modification.



#### **Termination Resistor Setup**

You can install termination resistors if necessary for impedance matching. The card has mounting spaces for termination resistors, but no resistors are installed at the factory. Depending on your application you may need to solder in a single resistor to handle the DATA+/DATA- pair (and a corresponding resistor on the other end of the connection). The value of the resistor should equal the characteristic impedance of the signal wires (approximately 120 Ohms or 300 Ohms).